You’ve heard about the Netflix prize, right? (If you haven’t, the short version is: Netflix is offering $1 million prize for anyone who can come up with a substantial improvement to their recommendations engine.)
I’m especially interested because 1) I am a former Netflix employee
So I’ve been perusing the forum for a few minutes to see what the contestants were talking about, and I happened upon a brilliant digression by one Benji Smith about exploring the most-loved, most-hated, and most-contested movie titles in the database through intelligent analysis. Here’s an excerpt:
Now, where is ‘Miss Congeniality’? Evidently, she’s number 171 on the most-loved list. But…Huh? What does that mean? How can a movie be #195 on the most-hated list and also be #171 on the most-loved list? Who’s to blame?
Standard deviation, I’m looking in your direction.
To get a look at the movies that are both universally loved, and universally hated (by different subgroups of people, of course) Let’s write a query that amplifies standard deviation and de-amplifies population, pointing out the sources of contention in our dataset
If this sort of thing looks fun to you, clicky the linky and go see what movies came back from his results. It is data geekery at its finest.
(Edited to add: I emailed Benji Smith to let him know I was talking about him, and he suggested adding a link to benjismith.net, so we can all go read his entertaining essays. Go! Enjoy!)
* I was the Content Manager, circa 2000-2001. I oversaw all content on the web site, its relationships within the database, its timely entry on the site, how it got sourced, etc. It was a super-fun job.
wow!
I have another programmer friend who I am working on this with. We wrote a recommendation system for another ecommerce company, but I don’t think our chances of winning are all that great.
However, we have a registered team, and if you think you have some valuable insight to offer maybe you could join our team.
-Jackson
Aww, Jackson, that’s sweet of you to offer! I’d love to. Unfortunately:
But thanks! I’ll definitely be interested to hear how you do with it.